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ABSTRACT 

The feedback control and modeling of a mobile robot with two wheels that are 

independently steerable and drivable is studied. Two-wheel steer vehicles increase their 

maneuverability when both wheels are drivable and therefore increases their performance 

in confined spaces. A dynamic feedback control algorithm is developed, which enables 

the vehicle to move from any initial configuration (position and orientation) to any final 

configuration. Simulation results are presented to verify the independent control of the 

two position variables and the orientation variable. A comparison with a two-wheel 

steering and one wheel drive vehicle shows that driving both wheels increases 

performance and maneuverability. 
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I. INTRODUCTION 

Wheeled mobile robots come in a number of different kinematic structures. 

Typical robots have a steerable front wheel(s), and the rear wheel(s) whose orientation 

relative to the vehicle body is fixed, such as an automobile or a bicycle. Some robots are 

the differential-drive type which have two co-axial wheels that are independently actuated 

to achieve forward/backward and rotational motions.   The synchronous-drive type of 

mobile robots such as Nomad 200 [Ref. 1] have all the wheels steer and rotate together so 

that the wheels are parallel all the time. Mobile robots such as these have two degrees of 

freedom and are nonholonomically constrained. 

This thesis describes a type of mobile robot that has two independently steerable 

and drivable wheels. Using the bicycle as an example, this type of mobile robot would 

have both the front and rear wheels drivable as well as steerable. It has been shown that a 

mobile vehicle with two steerable wheels with one drivable can be controlled using 

dynamic feedback control [Ref. 2]. One example of this type of mobile robot is the SR2 

mobile robot from Cybermotion Inc. which has three steerable and drivable wheels [Ref. 

3]. Four-wheel steering automobiles [Ref. 4 and Ref. 5] and fire trucks [Ref. 6] are other 

examples, both of which are designed for improving maneuverability. Although these 

types of vehicles are still nonholonomically constrained, they can still be controlled to 

follow a path with independent orientation [Ref. 7] and are extremely maneuverable in 

confined space [Ref. 8]. 

This thesis focuses on modeling and control of a vehicle with two wheels, both of 

which are steerable and drivable. The vehicle has four input variables, the steering 

velocities of the two wheels and the rotational velocity of both wheels. The problem of 

how to steer and deliver the torque to the two wheels in order to independently control the 

position and orientation of the vehicle body is studied. In particular, a dynamic feedback 

algorithm is developed, which linearizes and decouples the system. The output in this 

case is the two-dimensional position and one-dimensional orientation of the vehicle body. 



Consequently, the algorithm enables the vehicle to follow any desired position trajectory 

and orientation trajectory. Furthermore, it will be shown that the input-output 

linearization cannot be achieved by any static state feedback [Ref. 2]. Dynamic feedback 

linearization was previously applied to three-wheel mobile robots (with a free or steering 

wheel) that have only two inputs [Ref. 9]. 

One of the benefits of having both wheels drivable would include increasing the 

maneuverability the vehicle. Both wheels drivable would allow pure rotation in place and 

pure translation in the lateral direction of the vehicle. Imagine parallel parking by just 

rotating all wheels perpendicular to the body of the vehicle and laterally translating into 

the parking space. Another benefit would be the ability to have the torque distributed to 

the wheels depending on the road conditions, and if a wheel began to slip, the torque 

delivered to the wheels could be transferred to the other wheel. This would result in a 

two wheel steerable, one wheel drivable vehicle until the slipping wheel regains traction. 



II. KINEMATIC MODEL OF THE VEHICLE 

A.       NOTATIONS 

Figure 1 shows a diagram of a vehicle with two independent steering wheels. The 

two wheels are located at pi and p2 on the vehicle, respectively. p0 is located at the center 

of gravity of the vehicle which is assumed to be located on the pi - p2 axis. The distance 

from po to pi is a and the distance from po to p2 is b. 

Four coordinate frames are defined for describing position and orientation of the 

vehicle [Ref. 2]. {U} is the earth-fixed coordinate frame. {1} is the frame fixed on 

wheel 1. xi is chosen to be along the horizontal radial direction and yi is in the lateral 

direction. Likewise, {2} is the frame defined for wheel 2. {0} is the frame defined at 

point p0. yo is chosen to be a unit vector pointing from p2 to pi, and x0 is orthogonal to 

the line segment from p2 to pi. 

The orientation of the vehicle body is characterized by <j>0, which is the angle from 

Xu to x0. <|>i and (j)2 are two steering angles defined from x0 to Xj, i = 1,2. With these 

Figure 1: Coordinate systems for a two steering wheel vehicle 



notations, we are ready to establish homogeneous transformations describing one frame 

relative to another. In what follows, \T denotes the homogeneous transformation of 

frame {b} relative to frame {a}.   Because the motion of the vehicle is restricted to the 

two-dimensional plane, homogeneous transformations are 3 x 3 rather than 4x4. 

T- 

°7: 

T = 

cos((|)0) -sin((|)0) xQ 

sin(4>0) cos((|)0) y0 

0 0 1 

cos^j) — sin((b1) 0 

sin((j)j) cos((()j) a 

0 oi. 

cos((()2) -sin(<j>2) 0 

sin((j)2) cos((j)2) -b 

0 0 1 

B. VELOCITY KINEMATICS 

With the help of homogeneous transformations given above, the velocities of 

point pi and point p2 can be computed. The homogeneous position vector of point pi and 

p2 expressed in frame {0} are: 

P\ = Pi = 

0 

These points are represented in frame {U} by 

Pi-oT P\ - 

cos(<j)0)   — sin(<(>0)   x0 

sin(^0)     cos(<(>0)     y0 

0 0 1 

Pi- o1 Pi - 

cos((()0)   — sin(<>0)   x0 

sin(<t)0)     cos((|)0)     y0 

0 0 1 

0 

a 

1 

0 

-asin(<))0) + x0 

acos((()0) + y0 

1 

&sin((|)0)-i-x0 

-6cos((|)0) + yo 

1 



The velocity of the points pi and p2 (or differentiated with respect to frame {U}) 

expressed in frame {U} are: 

P\ 

In order to derive the nonholonomic constraint equations of wheel 1, the velocity 

of point pi relative to frame {U} is expressed in frame {1}: 

-acos((()0)4>0+i0 £cos(0o)0o+io 

-asin(<j)0)(|)0 + y0 UP2 = &sin(0o)0o+yo 

0 0 

1-        _(VrrY
XU    ■        _(UrpOrr\-

lU    ■ 
P\=\\T)       P\={oTiT)      Pi 

cosOj^+^j)     sin((|)0+(t)i)    * 

-sin((|)0 +<!>!)   cos((j)0+^i)   * 

0 0 1 
Pi = 

x0 cos(4»0 +<>!> + y0 sin((|>0 +(]),) -a<j)0 cos^) 

- x0 sin(4>0 + ()>!) + y0 cos((|>0 + <!>!) + a(j)0 sin^) 

0 

where the terms indicated by * are irrelevant in the computation. Likewise, the velocity 

of point 2 relative to frame {U} is expressed in frame {2} as follows: 

'Pi 

x0 cos(<|>0 + <|>2) + y0 sin(<j)0 +ty2) + b$0 cos(<j>2) 

- x0 sin((j)0 + (j)2 ) + y0 cos(<|>0 + 02)" H>o sia($2) 

0 

C.       CONSTRAINT EQUATIONS 

The vehicle is subjected to four nonholonomic constraints. The first two 

constraints are derived from the fact that the wheels cannot move in the lateral direction. 

That is, the y component of 1 pl and 2p2 is zero: 

- *o sin(<l>o + 4>i) + y0 cos(<l>o + 4>i) + «<t>o sinC^!) = 0 

- x0 sin((|)0 + (j)2) + y0 cos(<t>0 + §2) - 6<j>o sin((|)2) = 0 

The other two constraints are due to the no-slip condition. Let r be the radius of 

the wheels, and 0i5 i=l,2 be the angular displacement of the wheels (driving angles) then 



the x component of x px 

These two 

i0cos((|)0+(|)2) + y0 

Choosing the following 

1 px and 2 p2 is equal to the velocity of the wheel in that direction. 

constraints are expressed as: 

x0 cos((J)0 + <^) + y0 sin((|)0 + <|)i) - a<j)0 cosC^) = rQx 

r. rncf'fh- -4- rh. "\ 4- v. sin((t)n + ^ - ^ -1- ^   '•'"»c/'fh _ "\ — rC\ 

generalized coordinate vector 

2 = [*0    y0    ©1    ©2    <t>o    <t>i    $2] 

the four constraints can be written as 

A{q)q = 0 

where the 4 x 7 

A(q) = 

dimensional matrix A(q) is given by 

-sin((|)0 + §x)    cos((j)0 H-^j)     0 0 asin(((>j) 0 0 

— sin(<|)0 +<j>2)   cos((|)0 + cf)2)    0 0 -bsm{§2) 0 0 

cos(^)0 +([>!)     sin(())0+(j)j)   -r 0 -«cos^) 0 0 

cos((|)0 +(t>2)     sin((()0+(|)2)     0 -r bcos{§2) 0 0 

(1) 

D.       KINEMATIC MODEL 

The 4x7 dimensional matrix A(q) has a 3-dimensional null space. Let 

S{q) = [sx(q)    s2(q)    s3(qj\ 

be a 7 x 3 full-rank matrix whose columns s;(q), i= 1,2,3, are in the null space of A(q), that 

is, A(q) S;(q) = 0. The three columns of S(q) form a basis for the null space of A(q). 

Since the generalized velocity q is always in the null space of A(q) as characterized by 

Equation (1), it may be expressed as 

4 = S{q)t\ (2) 

where r\ is a 3-dimensional vector of independent velocities. It is noted that the choice of 

S(q) and the corresponding rj is not unique. For a certain choice, r\ may not necessarily 

represent any physical velocity. 

As stated earlier, both wheels are steerable and powered. However, only three 

velocity inputs are needed. If we choose rj to be the three angular input velocities, that is, 



TV 

the corresponding S(q) is then given by 

Til V 
*12 

= ♦l 
Jb. >2. 

where 

S(q) = 

su{q) 0 o" 
S2l(<l] 0 0 

l 0 0 

*4lW 0 0 
J5l(«i 0 0 

0 1 0 

0 0 1_ 

su(q) = r 

s2l(q) = r 

cos(<|)0+<!»!)- 

sin^o+^j)- 

cos^sin^-^) 

2sin())2 

sin())0sin((l)2 -<|>i) 
2sin(()2 

^41 (tf) = 
sin<t>j 

*5i(?) = - 

sin(|)2 

r     sin((>2 -<)>!) 

(a+b)     sin<))2 

(3) 



E. DYNAMICS 

Since only one wheel rotation velocity is used as one of the inputs, the torque 

delivered to both wheels must be incorporated into this single input. This relationship is 

obtained by solving the dynamic equation for the forces. Figure 2 shows the dynamic 

forces acting on the body and wheel unit. Summing the moments about the z0 axis at the 

center of gravity yields 

X M   = -aF1 coscjjj +bF2 cos(|)2 = IBty0 (4) 

where IB is the body moment of inertia. For the wheel, summing the moments at the 

point where wheel i, (i = 1,2) makes contact with the surface yields 

Z<MZ= CF( + T{ = IWQ{ + rmyfüi 

where Iw is the wheel moment of inertia and mw is the mass of the wheel.   Since the 

acceleration aj = rQt, 

t,+e,(/  '~2 

F;   =' 
lw + r*mu,) lWj 

(5) 

Combining Equation (4) and Equation (5) provide the governing equation of motion. 

axx cos^j -bx2 cos(j)2 — aTwQl cos^j +bIwQ2 cosc^ = c/ß^0 (6) 

where Iw=Iw+r m, lw w iw. 

From Figure 3, the following relationships can be derived. The velocity diagram 

and the law of sine's provide the following relationship between 0, and 02. 

*Fi I   <l>2 
| jt 

A£/ a b s0> & 

0 1 <y 

Figure 2: Dynamic force diagram 



<i>0 

sin^!     sm(])2     sin(())2-^J 

L2 Lj a + b 

Vl     V2        r62sin(<|)2-<|)1)       r61 sin(<l)2 -^J 

Lj     L2 sm^^ia+b) sm§2{a+b) 

0j sine))! = 02 sin(J)2 

(7) 

(8) 

i/y 

A// 
fVi = r6x 

1 

/   \1  <l>2 
\ i\ 

♦l a+b 180- <t>2T^O^ 

L\ L2 /V2 = r£* 

0c 

Figure 3: Kinematic velocity diagram 

Differentiating Equation (7) and Equation (8) and making substitutions and 

solving for 02 provide 

Gj sinc|)1sin((|)2 -^J + ^^Ca + ZOsHKlJj COS(|)2 -§1(a+b)cos§l sin(j)2] 

rsin(|)2 sin(<j)2 — <|>i) 

Likewise, solving for (|)0 

-01rsin2((j)2 -<j)J + <j)0(a + fc)|sin<|)2cos(<|)2 — 4*1X^*2 -<i)i) + ^2C0S(t)2 sin(<|)2 -<|>i)l 
4>o =     — 

(9) 

{a + b) sin <|>2 sin((()2 -<)>!) 

Combining Equation (6), Equation (9), and Equation (10) gives the equation for 

the angular acceleration of wheel 1 as a function of both wheels input torque and the 

angular velocity of the body. 

(10) 



+ <t>0 (11) 

01rsin((|)2 -^l)\aIw(a + b)cos^l sin<()2 -bIw(a+b)sm§lcos§2 -cIBrsm(§2 -(j^)] 

xx\ar{a + b)cos(^ sin<j)2 sin(<j>2 -<J)j)j-x2pr(a + Zj)cos(()2 sin{j)2sin(())2 -§i)\ 

blw(a+b)  cos(()2[({>2 8111(1)5 008(1)2 -(j)jCOS(()jSin(t)2] 

-c/5r(flr+^)[sin(j)2cos((|)2 — t^j )(4>2 ~^i)_^2 cos(|)2 sin((|>2 -<t>i)J 

Equation (11) can be integrated to provide the angular velocity of wheel 1 for the 

input to the control algorithm. In this way, both torque inputs are combined into a single 

input necessary for use as one of the three inputs for the control algorithm. The other two 

inputs will be the two steering angular velocities. 

The next chapter develops the control for the vehicle and uses these three 

velocities as the inputs for the feedback control algorithm. From these three inputs to the 

control algorithm, the seven dimensional state vector provides the outputs of the vehicle's 

position and orientation. 

10 



III. FEEDBACK CONTROL 

Considering the generalized coordinate vector q as the state vector, the kinematic 

model of the vehicle represented in the state space form is characterized by Equation (2) 

in which T) is the input to the system. To control the position and orientation of the 

vehicle, the natural choice for the output equation is: 

y = K4) = y0 

.<t>0. 

Once the state equation and output equation are derived, the next step is to design 

a controller for this system. Feedback linearization technique is used [Ref. 10]. It has 

been shown that a static feedback is not capable of linearizing the system [Ref. 2] which 

will be repeated here. Furthermore, the dynamic feedback that linearizes and decouples 

the system will also be derived. 

STATIC FEEDBACK 

To derive a static nonlinear feedback, we differentiate the output equation. 

dh(q) .     dh(q) 
y = - -q = ■S(q)T} = ®(q)T) 

dq   "*        dq 

where $>(q) denotes the decoupling matrix of the system. If Q>(q) is of full rank, we may 

apply a static feedback of the form 

r\ = ®-1(q)\L 

to obtain the linearized closed-loop system: 

y = \i 

In the present case, the decoupling matrix is given by 

®(q) = -^LS(q) 
dq 

su(q) 0   0~ 

*2l(tf) 0   0 

s5\(q) 0   0 

11 



which is unfortunately singular. Therefore, it is not possible to have a static feedback that 

linearizes the system. 

B. DYNAMIC FEEDBACK 

If a system is not linearizable by any static feedback, it may nevertheless be 

linearizable by a dynamic feedback. The construction of a dynamic feedback consists of 

two steps. First we construct a static feedback shown below, which is called Feedback I: 

T\ 0 

0 

1   0 

0   1 
I* 

The application of this feedback results in the following closed-loop system: 

y = Vi 

yi 

h 
S2\lSl\ 
SS\ISU. 

Hi Hi 

It is noted that the first component of the output is linearized and decoupled from 

the other two components. Next, we apply another feedback in order to linearize the 

latter two components of the output. To do so, we differentiate them once more. 

r WH] 
3>2 

.h. 
= 

.^21. 
M-i +M-i 

<tyo 
<l>o +M-1 

d<i>i       3<|>2 
a^,,   dv. 21 21 

3<ba      3(|)2 

t1 
<j>2 

Noting that <j)0 = s^^ = s51/sn \il, and 

V 
_<t>2_ 

= = 
w 
.M-3. 

we may represent the above equation as follows: 

= ßi(?)|ii+ß2 ($¥?+%) 
^2 

5>3 

|X2 

H3. 

where 

12 



= QM)Vi+Q2(q)v2x+n{q) 
^2 

where 

Qx(q) = 
21 

&(*) = 

^11 

^4>o 
sv 21 

s5i/su 

Q(?) = iij 

Now applying Feedback II given by 

d§0 

5T21   ay21 

= Q-1(9) 

the latter two outputs are linearized as 

1^2 

.»3. 

ö<t>i      ö<|>2 

■QiMvi-Qitim 

yz 

Furthermore, let fi, = Vj, therefore 

The complete controller with three feedback loops for the steering angles and the 

wheel velocity input is depicted in a block diagram in Figure 4. Figure 5 shows the 

MATLAB Simulink program diagram. 

The simulation results are provided in the next chapter. The results showed a 

significant improvement in performance over the two-wheel steerable, one-wheel 

drivable vehicle. 

13 
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Figure 4: Dynamic feedback controller 

h(q) 

(^■»[K5= >l  lime  | 
ClockGainl     To Workspace! 

\ linear_teedback J— 

To Workspace2 

S-Function3       Integrator 

—W regulate 

To Workspace 

m 
XYQraph 

L_fl 

pht_o 

phil 

pht2 

Figure 5: MATLAB Simulink program 
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IV. SIMULATION 

A.       TEST CONDITIONS 

The vehicle feedback control system shown in Figure 4 has been simulated using 

Matlab Simulink (Figure 5). Each block in the figure is implemented by the use of an S- 

function [Ref. 11]. To stabilize each of the linearized subsystems, the linear feedback is 

further designed. In the simulation, the linear feedback gain is chosen to place the poles 

of each subsystem at -5 and -15. The system was tested and compared to the performance 

of the dynamic control algorithm for the two steering, one wheel drivable vehicle. The 

following are the initial and goal configurations used for the test: 

x0 ' 0 " 

y0 
= 0 

_V init 
50° 

xo 10 ~ 

yo = -5 

-V goal 
-10° 

The parameters used for the simulation are designed to be realistic of an actual 

robot and in MKS units and are as follows: 

a = 0.55 b = 0.30 c = 0.25 

r = 0.10 

Figure 6 clearly shows that the path from the initial point to the goal is a straight 

line. This direct path was the result for the two steering wheel vehicle regardless if one or 

both wheels were powered. 

IB=2.0 Iw = 0.05 

15 
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B.       INDEPENDENT CONTROL OF POSITION AND ORIENTATION 

Figure 7 through Figure 14 show the response of the two wheel drivable vehicle 

compared to the one wheel drivable vehicle for the same initial and final conditions used 

in the test. It is evident from Figure 7 to Figure 14 that in either case, both the position 

and orientation converge to the goal. This confirms that the position and orientation can 

be independently controlled. However the manner in which they reach the goal differ 

significantly. 

The vehicle with only one of the wheels drivable quickly accelerates and rotates 

early in the trajectory and then slowly approaches the goal. The vehicle with both wheels 

drivable has a steady velocity and rotation throughout the trajectory. This is especially 

evident in Figure 11 and Figure 12. The body angle versus time clearly show the 

differences between the two simulations, even though both trajectories follow a direct 

path to the goal. 

Both the constant rate of speed and constant rate of rotation of the body would be 

highly beneficial if there were on board sensors scanning the environment during the 

journey. 

17 
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Figure 11: Two wheel drivable vehicle (phi: dashed, phi dot: solid) 
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Figure 12: One wheel drivable vehicle (phi: dashed, phi dot: solid) 
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Figure 13: Two wheel drivable vehicle (phi 1: dashed, phi 2: solid) 
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Figure 14: One wheel drivable vehicle (phi 1: dashed, phi 2: solid) 
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C.       ONE WHEEL VERSUS TWO WHEEL DRIVABLE VEHICLES 

Figure 15 and Figure 16 emphasize the differences between the one wheel 

drivable and two wheel drivable simulations. Even though both cases have two wheel 

steering, when both wheels are drivable, the transition from the initial starting point to the 

final goal point is much more linear than when only one wheel is powered. The body 

angle was adjusted by 90 degrees to the longitudinal axis of the vehicle, so that its 

orientation is from a more familiar perspective. 

In Figures 15 and 16, each frame of the vehicle represents the vehicle's position, 

wheel angle, and the vehicles orientation at a particular point in time. Each snapshot is 

taken at equal intervals of time. These two figures clearly show that when only one wheel 

is being drivable it must approach the final goal point slowly to align to the correct 

orientation. When both wheels are drivable, the rotation of the vehicle is consistent 

throughout the trajectory. 
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Figure 16: One wheel drivable vehicle trajectory 
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V. CONCLUSION AND FUTURE WORK 

This thesis studied the control of a two-wheel vehicle with both wheels steerable 

and drivable. Unlike one-wheel steer mobile robots (e.g., the automobile/bicycle/tricycle 

type of mobile robots), the control of two-wheel steer robots are less intuitive and more 

difficult. By making both wheels drivable the complexity of the control algorithm 

increases further. Using a dynamic nonlinear feedback, independent control of the 

position and orientation of a mobile robot was obtained. The orientation is no longer an 

uncontrollable state variable governed by internal dynamics. Consequently, while the 

vehicle follows a direct path to its goal, its orientation does not have to be in the 

tangential direction of the path. For example, the orientation of the vehicle body can be 

independently controlled for scanning with onboard sensors. 

Further work on this project includes: 

The concept developed in this thesis can be extended to an all-wheel steering, all 

wheel drivable vehicle with four independent wheels. This may require redefining the 

constraint equations as well as the kinematic force and velocity equations may be 

required. 

Distribution of the torque between the wheels would be greatly beneficial if one 

of the wheels began to slip. This simulation used a constant torque value for each wheel 

initially, but later trials found that a constant torque divided by the angular speed of the 

wheel squared provided the best overall performance. More research is needed on how 

exactly to distribute the torque to each wheel depending on the steering angle, final and 

initial position and configuration, and surface conditions. 

It was stated from Equation (3) that the input velocities, r\, were chosen 

arbitrarily. Perhaps better performance could be obtained from using the two angular 

wheel velocities and one steering angular velocity for the input parameters. These new 

inputs would make each input torque independent of the other, allowing one of the 

wheels to slip. 
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